Type: | Package |
Title: | MultiGroup Method and Simulation Data Analysis |
Version: | 0.4.0 |
Maintainer: | Carolina Millap/'an <cayoya19@gmail.com> |
Description: | Two method new of multigroup and simulation of data. The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | mvtnorm, rlist, expm, stats, ggplot2, gridExtra, cowplot, plsgenomics, gplots, ggrepel, qgraph, mgm,lemon |
Suggests: | knitr, rmarkdown |
ByteCompile: | yes |
VignetteBuilder: | knitr |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2024-07-07 23:06:39 UTC; jmuno |
Author: | Carolina Millap/'an [aut, cre],
Esteban Vegas |
Repository: | CRAN |
Date/Publication: | 2024-07-07 23:20:03 UTC |
biplot methods
Description
biplot methods
Usage
BIplot(
variates,
loadings,
prop_expl_var,
comp = c(1, 2),
group = NULL,
rownamevar = T,
rownameload = T
)
Arguments
variates |
is the size of groups |
loadings |
is a vector of classes |
prop_expl_var |
data set |
comp |
component numeric |
group |
is a vector of groups |
rownamevar |
is a logical vector where TRUE is the label of the observations, if is FALSE, is index. |
rownameload |
is a logical vector where TRUE is the label of the vectors of loadings, if is FALSE, is index. |
Value
return an grafics .
Examples
library(datasets)
obj<-pca(datos=iris[,-5],grupos=iris[,5],Plot=FALSE,center=TRUE,scale=TRUE)
BIplot(variates=obj$variates,loadings=obj$loadings,
prop_expl_var=obj$prop_expl_var,comp=c(1,2),
group=factor(as.numeric(iris[,5])),rownamevar=FALSE,rownameload=TRUE)
Simulation function of quantitative multigroup data under a multivariate normal distribution
Description
Simulation function of quantitative multigroup data under a multivariate normal distribution
Usage
fun.sim(g, mean1, d, n.var, sds2, corr)
Arguments
g |
An vector of the size of each group |
mean1 |
An vector of the population means structure |
d |
distance d for the structure of population means |
n.var |
2x1 dimension vector whose first component is the number of random variables to simulate and the second component number of noise variables to simulate |
sds2 |
An vector of the variances to simulate for each group noise variables |
corr |
An vector of the correlation to simulate for each group and noise variables |
Value
return an grafics
Examples
fun.sim(g=c(20,20),mean1=2,d=0,sds2=c(1,1,1),corr=c(0.5,0.5,0),n.var=c(50,1))
Performs a Multigroup Dimensionality Reduction (MDR) analysis in the given multigroup data matrix. Show MDR graphical output.
Description
Performs a Multigroup Dimensionality Reduction (MDR) analysis in the given multigroup data matrix. Show MDR graphical output.
Usage
mdr(group, data.x, c, Plot = T)
Arguments
group |
is a vector of classes |
data.x |
quantitative data set |
c |
component numeric |
Plot |
grafics output of MDR |
Value
return an grafics .
Examples
sim.list<-fun.sim(g=c(50,50,50),mean1=2,d=0,sds2=c(1,1,1,1),
corr=c(0.5,0.5,0.5,0),n.var=c(30,30))
mdr(group=as.factor(sim.list$grp),
data.x=sim.list$`lisx`,c=2)
Performs a Multigroup PCA analysis in the given multigroup data matrix. Show mgpca graphical output.
Description
Performs a Multigroup PCA analysis in the given multigroup data matrix. Show mgpca graphical output.
Usage
mgpca(
mat.to.diag,
mat.x,
cls,
Plot = TRUE,
ncomp = 2,
center = TRUE,
scale = TRUE
)
Arguments
mat.to.diag |
is a matrix with the data |
mat.x |
is a vector of classes |
cls |
group |
Plot |
grafics output of mgpca |
ncomp |
number of component |
center |
is a logical vector where TRUE is center (whether the variables should be shifted to be zero centered), if is FALSE, is original data. |
scale |
is a logical vector where TRUE is scale (indicating whether the variables should be scaled), if is FALSE, is original data. |
Value
If simplify == TRUE class values.
If simplify == FALSE, the result is a list of length
nsim
data.tables.
Examples
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:50,1:5]
groups<-as.factor(SRBCT$Y)[1:50]
mat.to.diag1<-new.cov(x=mydata,cls=groups,A=diag(ncol(mydata)))
mgpca(mat.to.diag=mat.to.diag1,mat.x=as.matrix(mydata),
cls=groups,Plot=TRUE,ncomp=2,center = TRUE,scale = TRUE)
Function for the new covariance matrix in the multigroup PCA method
Description
Generates covariance matrix...
Usage
new.cov(x, cls, A)
Arguments
x |
is a matrix with the data |
cls |
is a vector of classes |
A |
is a symmetric and positive definite matrix associated to inner product respect to the base of its vectorial space. |
Value
return an grafics.
Examples
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:50,1:20]
groups<-as.factor(SRBCT$Y)[1:50]
new.cov(x=mydata,cls=groups,A=diag(ncol(mydata)))
Performs a principal components analysis in the given data matrix. Show PCA graphical output.
Description
Performs a principal components analysis in the given data matrix. Show PCA graphical output.
Usage
pca(datos, grupos, Plot = TRUE, center = TRUE, scale = TRUE)
Arguments
datos |
is a matrix with the data |
grupos |
is a vector of classes |
Plot |
vector logic for grafic |
center |
data set center by columns |
scale |
data set scaled by columns |
Value
return an grafics.
Examples
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:30,1:20]
groups<-as.factor(SRBCT$Y)[1:30]
pca(datos=mydata,grupos=groups,Plot=TRUE,center=TRUE,scale=TRUE)
Performs a Single Dimension Exploration (SDE) analysis in the given multigroup data matrix. Show SDE graphical output.
Description
Performs a Single Dimension Exploration (SDE) analysis in the given multigroup data matrix. Show SDE graphical output.
Usage
sde.method(mydata, groups, plt = FALSE)
Arguments
mydata |
data set |
groups |
is a vector of classes |
plt |
grafics |
Value
return an grafics .
Examples
sim.list2<-fun.sim(g=c(20,50,10),mean1=0.5,d=0,sds2=c(1,1,1,1),corr=c(0.1,0.5,0.5,0),
n.var=c(20,20))
datos2 <- as.data.frame(sim.list2$x)
datos2<-subset(datos2,select=-grp)
grupos <- sim.list2$grp
grupos<-factor(grupos,labels=c(1,2,3))
sde.method(mydata=datos2,groups=grupos,plt=FALSE)