Type: | Package |
Title: | The Generalized Time-Dependent Logistic Family |
Version: | 1.0.0 |
Date: | 2022-03-25 |
Author: | Jalmar Carrasco [aut, cre], Luciano Santana [aut], Lizandra Fabio [aut] |
Maintainer: | Jalmar Carrasco <carrascojalmar@gmail.com> |
Description: | Computes the probability density, survival function, the hazard rate functions and generates random samples from the GTDL distribution given by Mackenzie, G. (1996) <doi:10.2307/2348408>. The likelihood estimates, the randomized quantile (Louzada, F., et al. (2020) <doi:10.1109/ACCESS.2020.3040525>) residuals and the normally transformed randomized survival probability (Li,L., et al. (2021) <doi:10.1002/sim.8852>) residuals are obtained for the GTDL model. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
LazyData: | TRUE |
RoxygenNote: | 7.1.1 |
Imports: | survival, |
Suggests: | stats, |
Depends: | R (≥ 2.10) |
NeedsCompilation: | no |
Packaged: | 2022-03-25 20:45:49 UTC; carra |
Repository: | CRAN |
Date/Publication: | 2022-03-28 07:50:12 UTC |
Artset1987 data
Description
Times to failure of 50 devices put on life test at time 0.
Usage
data(artset1987)
Format
This data frame contains the following columns:
-
t: Times to failure
References
Aarset, M. V. (1987). How to Identify a Bathtub Hazard Rate. IEEE Transactions on Reliability, 36, 106–108.
Examples
data(artset1987)
head(artset1987)
The GTDL distribution
Description
Density function, survival function, failure function and random generation for the GTDL distribution.
Usage
dGTDL(t, param, log = FALSE)
hGTDL(t, param)
sGTDL(t, param)
rGTDL(n, param)
Arguments
t |
vector of integer positive quantile. |
param |
parameters (alpha and gamma are scalars, lambda non-negative). |
log |
logical; if TRUE, probabilities p are given as log(p). |
n |
number of observations. |
Details
Density function
f(t\mid \boldsymbol{\theta})=\lambda\left(\frac{\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}{1+\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}\right)\times\left(\frac{1+\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}{1+\exp\{\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}\right)^{-\lambda/\alpha}
Survival function
S(t \mid \boldsymbol{\theta})=\left(\frac{1+\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}{1+\exp\{\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}\right)^{-\lambda/\alpha}
Failure function
h(t\mid\boldsymbol{\theta})=\lambda\left(\frac{\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}{1+\exp\{\alpha{t}+\boldsymbol{X}^{\top}\boldsymbol{\beta}\}}\right)
Value
dGTDL
gives the density function, hGTDL
gives the failure function, sGTDL
gives the survival function and rGTDL
generates random samples.
Invalid arguments will return an error message.
Source
[d-p-q-r]GTDL are calculated directly from the definitions.
References
Mackenzie, G. (1996). Regression Models for Survival Data: The Generalized Time-Dependent Logistic Family. Journal of the Royal Statistical Society. Series D (The Statistician). 45. 21-34.
Examples
library(GTDL)
t <- seq(0,20,by = 0.1)
lambda <- 1.00
alpha <- -0.05
gamma <- -1.00
param <- c(lambda,alpha,gamma)
y1 <- hGTDL(t,param)
y2 <- sGTDL(t,param)
y3 <- dGTDL(t,param,log = FALSE)
tt <- as.matrix(cbind(t,t,t))
yy <- as.matrix(cbind(y1,y2,y3))
matplot(tt,yy,type="l",xlab="time",ylab="",lty = 1:3,col=1:3,lwd=2)
y1 <- hGTDL(t,c(1,0.5,-1.0))
y2 <- hGTDL(t,c(1,0.25,-1.0))
y3 <- hGTDL(t,c(1,-0.25,1.0))
y4 <- hGTDL(t,c(1,-0.50,1.0))
y5 <- hGTDL(t,c(1,-0.06,-1.6))
tt <- as.matrix(cbind(t,t,t,t,t))
yy <- as.matrix(cbind(y1,y2,y3,y4,y5))
matplot(tt,yy,type="l",xlab="time",ylab="Hazard function",lty = 1:3,col=1:3,lwd=2)
Maximum likelihood estimation
Description
Estimate of the parameters.
Usage
mle1.GTDL(start, t, method = "BFGS")
Arguments
start |
Initial values for the parameters to be optimized over. |
t |
non-negative random variable representing the failure time and leave the snapshot failure rate, or danger. |
method |
The method to be used. |
Value
Returns a list of summary statistics of the fitted GTDL distribution.
References
Aarset, M. V. (1987). How to Identify a Bathtub Hazard Rate. IEEE Transactions on Reliability, 36, 106–108.
Mackenzie, G. (1996) Regression Models for Survival Data: The Generalized Time-Dependent Logistic Family. Journal of the Royal Statistical Society. Series D (The Statistician). 45. 21-34.
See Also
Examples
# times data (from Aarset, 1987))
data(artset1987)
mod <- mle1.GTDL(c(1,-0.05,-1),t = artset1987)
Maximum likelihood estimates of the GTDL model
Description
Maximum likelihood estimates of the GTDL model
Usage
mle2.GTDL(t, start, formula, censur, method = "BFGS")
Arguments
t |
non-negative random variable representing the failure time and leave the snapshot failure rate, or danger. |
start |
Initial values for the parameters to be optimized over. |
formula |
The structure matrix of covariates of dimension n x p. |
censur |
censoring status 0=censored, a=fail. |
method |
The method to be used. |
Value
Returns a list of summary statistics of the fitted GTDL model.
References
Mackenzie, G. (1996) Regression Models for Survival Data: The Generalized Time-Dependent Logistic Family. Journal of the Royal Statistical Society. Series D (The Statistician). (45). 21-34.
See Also
Examples
### Example 1
require(survival)
data(lung)
lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
formula = formula1,
censur = censur1)
fit.model1
### Example 2
data(tumor)
t2 <- tumor$time
start2 <- c(1,-0.05,1.7)
formula2 <- ~tumor$group
censur2 <- tumor$censured
fit.model2 <- mle2.GTDL(t = t2,start = start2,
formula = formula2,
censur = censur2)
fit.model2
Normally-transformed randomized survival probability residuals for the GTDL model
Description
Normally-transformed randomized survival probability residuals for the GTDL model
Usage
nrsp.GTDL(t, formula, pHat, censur)
Arguments
t |
non-negative random variable representing the failure time and leave the snapshot failure rate, or danger. |
formula |
The structure matrix of covariates of dimension n x p. |
pHat |
Estimate of the parameters from the GTDL model. |
censur |
Censoring status 0=censored, a=fail. |
Value
Normally-transformed randomized survival probability residuals
References
Li, L., Wu, T., e Cindy, F. (2021). Model diagnostics for censored regression via randomized survival probabilities. Statistics in Medicine, 40, 1482–1497.
de Oliveira, L. E. F., dos Santos L. S., da Silva, P. H. F., Fabio, L. C., Carrasco, J. M. F.(2022). Análise de resíduos para o modelo logístico generalizado dependente do tempo (GTDL). Submitted.
Examples
### Example 1
require(survival)
data(lung)
lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
formula = formula1,
censur = censur1)
r1 <- nrsp.GTDL(t = t1,formula = formula1 ,pHat = fit.model1$Coefficients[,1],
censur = censur1)
r1
### Example 2
data(tumor)
t2 <- tumor$time
formula2 <- ~tumor$group
censur2 <- tumor$censured
start2 <- c(1,-0.05,1.7)
fit.model2 <- mle2.GTDL(t = t2,start = start2,
formula = formula2,
censur = censur2)
r2 <- nrsp.GTDL(t = t2,formula = formula2, pHat = fit.model2$Coefficients[,1],
censur = censur2)
r2
Randomized quantile residuals for the GTDL model
Description
Randomized quantile residuals for the GTDL model
Usage
random.quantile.GTDL(t, formula, pHat, censur)
Arguments
t |
non-negative random variable representing the failure time and leave the snapshot failure rate, or danger. |
formula |
The structure matrix of covariates of dimension n x p. |
pHat |
Estimate of the parameters from the GTDL model. |
censur |
censoring status 0=censored, a=fail. |
Details
The randomized quantile residual (Dunn and Smyth, 1996), which follow a standard normal distribution is used to assess departures from the GTDL model.
Value
Randomized quantile residuals
References
Dunn, P. K. e Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236–244.
Louzada, F., Cuminato, J. A., Rodriguez, O. M. H., Tomazella, V. L. D., Milani, E. A., Ferreira, P. H., Ramos, P. L., Bochio, G., Perissini, I. C., Junior, O. A. G., Mota, A. L., Alegr´ıa, L. F. A., Colombo, D., Oliveira, P. G. O., Santos, H. F. L., e Magalh˜aes, M. V. C. (2020). Incorporation of frailties into a non-proportional hazard regression model and its diagnostics for reliability modeling of downhole safety valves. IEEE Access, 8, 219757 – 219774.
de Oliveira, L. E. F., dos Santos L. S., da Silva, P. H. F., Fabio, L. C., Carrasco, J. M. F.(2022). Análise de resíduos para o modelo logístico generalizado dependente do tempo (GTDL). Submitted.
Examples
### Example 1
require(survival)
data(lung)
lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
formula = formula1,
censur = censur1)
r1 <- random.quantile.GTDL(t = t1,formula = formula1 ,pHat = fit.model1$Coefficients[,1],
censur = censur1)
r1
### Example 2
data(tumor)
t2 <- tumor$time
formula2 <- ~tumor$group
censur2 <- tumor$censured
start2 <- c(1,-0.05,1.7)
fit.model2 <- mle2.GTDL(t = t2,start = start2,
formula = formula2,
censur = censur2)
r2 <- random.quantile.GTDL(t = t2,formula = formula2, pHat = fit.model2$Coefficients[,1],
censur = censur2)
r2
Tumor data
Description
Times (in days) of patients in ovarian cancer study
Usage
data(tumor)
Format
This data frame contains the following columns:
-
time: survival time in days
-
censured: censored = 0, dead = 1
-
group: large tumor = 0, small tumor = 1
References
Colosimo, E. A and Giolo, S. R. Análise de Sobrevivência Aplicada. Edgard Blucher: São Paulo. 2006.
Examples
data(tumor)
head(tumor)