Type: Package
Title: The Generalized Time-Dependent Logistic Family
Version: 1.0.0
Date: 2022-03-25
Author: Jalmar Carrasco [aut, cre], Luciano Santana [aut], Lizandra Fabio [aut]
Maintainer: Jalmar Carrasco <carrascojalmar@gmail.com>
Description: Computes the probability density, survival function, the hazard rate functions and generates random samples from the GTDL distribution given by Mackenzie, G. (1996) <doi:10.2307/2348408>. The likelihood estimates, the randomized quantile (Louzada, F., et al. (2020) <doi:10.1109/ACCESS.2020.3040525>) residuals and the normally transformed randomized survival probability (Li,L., et al. (2021) <doi:10.1002/sim.8852>) residuals are obtained for the GTDL model.
License: GPL (≥ 3)
Encoding: UTF-8
LazyData: TRUE
RoxygenNote: 7.1.1
Imports: survival,
Suggests: stats,
Depends: R (≥ 2.10)
NeedsCompilation: no
Packaged: 2022-03-25 20:45:49 UTC; carra
Repository: CRAN
Date/Publication: 2022-03-28 07:50:12 UTC

Artset1987 data

Description

Times to failure of 50 devices put on life test at time 0.

Usage

data(artset1987)

Format

This data frame contains the following columns:

References

Examples


data(artset1987)
head(artset1987)


The GTDL distribution

Description

Density function, survival function, failure function and random generation for the GTDL distribution.

Usage

dGTDL(t, param, log = FALSE)

hGTDL(t, param)

sGTDL(t, param)

rGTDL(n, param)

Arguments

t

vector of integer positive quantile.

param

parameters (alpha and gamma are scalars, lambda non-negative).

log

logical; if TRUE, probabilities p are given as log(p).

n

number of observations.

Details

Value

dGTDL gives the density function, hGTDL gives the failure function, sGTDL gives the survival function and rGTDL generates random samples.

Invalid arguments will return an error message.

Source

[d-p-q-r]GTDL are calculated directly from the definitions.

References

Examples


library(GTDL)
t <- seq(0,20,by = 0.1)
lambda <- 1.00
alpha <- -0.05
gamma <- -1.00
param <- c(lambda,alpha,gamma)
y1 <- hGTDL(t,param)
y2 <- sGTDL(t,param)
y3 <- dGTDL(t,param,log = FALSE)
tt <- as.matrix(cbind(t,t,t))
yy <- as.matrix(cbind(y1,y2,y3))
matplot(tt,yy,type="l",xlab="time",ylab="",lty = 1:3,col=1:3,lwd=2)


y1 <- hGTDL(t,c(1,0.5,-1.0))
y2 <- hGTDL(t,c(1,0.25,-1.0))
y3 <- hGTDL(t,c(1,-0.25,1.0))
y4 <- hGTDL(t,c(1,-0.50,1.0))
y5 <- hGTDL(t,c(1,-0.06,-1.6))
tt <- as.matrix(cbind(t,t,t,t,t))
yy <- as.matrix(cbind(y1,y2,y3,y4,y5))
matplot(tt,yy,type="l",xlab="time",ylab="Hazard function",lty = 1:3,col=1:3,lwd=2)




Maximum likelihood estimation

Description

Estimate of the parameters.

Usage

mle1.GTDL(start, t, method = "BFGS")

Arguments

start

Initial values for the parameters to be optimized over.

t

non-negative random variable representing the failure time and leave the snapshot failure rate, or danger.

method

The method to be used.

Value

Returns a list of summary statistics of the fitted GTDL distribution.

References

See Also

optim

Examples


# times data (from Aarset, 1987))
data(artset1987)
mod <- mle1.GTDL(c(1,-0.05,-1),t = artset1987)


Maximum likelihood estimates of the GTDL model

Description

Maximum likelihood estimates of the GTDL model

Usage

mle2.GTDL(t, start, formula, censur, method = "BFGS")

Arguments

t

non-negative random variable representing the failure time and leave the snapshot failure rate, or danger.

start

Initial values for the parameters to be optimized over.

formula

The structure matrix of covariates of dimension n x p.

censur

censoring status 0=censored, a=fail.

method

The method to be used.

Value

Returns a list of summary statistics of the fitted GTDL model.

References

See Also

optim

Examples


### Example 1

require(survival)
data(lung)

lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
                     formula = formula1,
                     censur = censur1)
fit.model1

### Example 2

data(tumor)
t2 <- tumor$time
start2 <- c(1,-0.05,1.7)
formula2 <- ~tumor$group
censur2 <- tumor$censured
fit.model2 <- mle2.GTDL(t = t2,start = start2,
                       formula = formula2,
                       censur = censur2)
fit.model2


Normally-transformed randomized survival probability residuals for the GTDL model

Description

Normally-transformed randomized survival probability residuals for the GTDL model

Usage

nrsp.GTDL(t, formula, pHat, censur)

Arguments

t

non-negative random variable representing the failure time and leave the snapshot failure rate, or danger.

formula

The structure matrix of covariates of dimension n x p.

pHat

Estimate of the parameters from the GTDL model.

censur

Censoring status 0=censored, a=fail.

Value

Normally-transformed randomized survival probability residuals

References

Examples


### Example 1

require(survival)
data(lung)
lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
           formula = formula1,
           censur = censur1)
r1 <- nrsp.GTDL(t = t1,formula = formula1 ,pHat = fit.model1$Coefficients[,1],
             censur = censur1)
r1

### Example 2

data(tumor)
t2 <- tumor$time
formula2 <- ~tumor$group
censur2 <- tumor$censured
start2 <- c(1,-0.05,1.7)
fit.model2 <- mle2.GTDL(t = t2,start = start2,
                       formula = formula2,
                       censur = censur2)
r2 <- nrsp.GTDL(t = t2,formula = formula2, pHat = fit.model2$Coefficients[,1],
            censur = censur2)
r2

Randomized quantile residuals for the GTDL model

Description

Randomized quantile residuals for the GTDL model

Usage

random.quantile.GTDL(t, formula, pHat, censur)

Arguments

t

non-negative random variable representing the failure time and leave the snapshot failure rate, or danger.

formula

The structure matrix of covariates of dimension n x p.

pHat

Estimate of the parameters from the GTDL model.

censur

censoring status 0=censored, a=fail.

Details

The randomized quantile residual (Dunn and Smyth, 1996), which follow a standard normal distribution is used to assess departures from the GTDL model.

Value

Randomized quantile residuals

References

Examples


### Example 1

require(survival)
data(lung)
lung <- lung[-14,]
lung$sex <- ifelse(lung$sex==2, 1, 0)
lung$ph.ecog[lung$ph.ecog==3]<-2
t1 <- lung$time
formula1 <- ~lung$sex+factor(lung$ph.ecog)+lung$age
censur1 <- ifelse(lung$status==1,0,1)
start1 <- c(0.03,0.05,-1,0.7,2,-0.1)
fit.model1 <- mle2.GTDL(t = t1,start = start1,
           formula = formula1,
           censur = censur1)
r1 <- random.quantile.GTDL(t = t1,formula = formula1 ,pHat = fit.model1$Coefficients[,1],
             censur = censur1)
r1

### Example 2

data(tumor)
t2 <- tumor$time
formula2 <- ~tumor$group
censur2 <- tumor$censured
start2 <- c(1,-0.05,1.7)
fit.model2 <- mle2.GTDL(t = t2,start = start2,
                       formula = formula2,
                       censur = censur2)
r2 <- random.quantile.GTDL(t = t2,formula = formula2, pHat = fit.model2$Coefficients[,1],
            censur = censur2)
r2

Tumor data

Description

Times (in days) of patients in ovarian cancer study

Usage

data(tumor)

Format

This data frame contains the following columns:

References

Examples



data(tumor)
head(tumor)