Type: | Package |
Title: | Co-Expression Differential Network Analysis |
Version: | 1.1.2 |
Author: | Deisy Morselli Gysi, Tiago de Miranda Fragoso, Eivind Almaas and Katja Nowick. |
Maintainer: | Deisy Morselli Gysi <deisy.ccnr@gmail.com> |
Description: | Categorize links and nodes from multiple networks in 3 categories: Common links (alpha) specific links (gamma), and different links (beta). Also categorizes the links into sub-categories and groups. The package includes a visualization tool for the networks. More information about the methodology can be found at: Gysi et. al., 2018 <doi:10.48550/arXiv.1802.00828>. |
License: | GPL-2 |
LazyData: | TRUE |
Depends: | R (≥ 3.1) |
Imports: | data.table, igraph, magrittr, plyr, visNetwork, reshape2 |
RoxygenNote: | 7.1.0 |
Suggests: | knitr, rmarkdown, wTO |
NeedsCompilation: | no |
Packaged: | 2020-07-02 15:25:35 UTC; deisygysi |
Repository: | CRAN |
Date/Publication: | 2020-07-15 12:30:02 UTC |
.Random.seed
Description
Random numbers generated by set.seed(123)
AST
Description
This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 50 brain samples with ASTgodendrogliomas. The wTO was calculated using the package wTO.
Usage
data("AST")
Format
A data frame with 3488761 observations on the following 3 variables.
Node.1
a factor with levels. TF names
Node.2
a factor with levels. TF names
cor
a numeric vector. wTO values calculated using only the TFs
Source
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4290
References
Sun L, Hui AM, Su Q, Vortmeyer A et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006 Apr;9(4):287-300. PMID: 16616334
Examples
data(AST)
str(AST)
CTR
Description
This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 23 brain samples with Controls. The wTO was calculated using the package wTO.
Usage
data("CTR")
Format
A data frame with 3488761 observations on the following 3 variables.
Node.1
a factor with levels. TF names
Node.2
a factor with levels. TF names
cor
a numeric vector. wTO values calculated using only the TFs
Source
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4290
References
Sun L, Hui AM, Su Q, Vortmeyer A et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006 Apr;9(4):287-300. PMID: 16616334
Examples
data(CTR)
str(CTR)
Categorize
Description
Categorize the links into -1, 0 and 1 given a cutoff.
Usage
Categorize(M, cutoff = 0.33)
Arguments
M |
A data.frame to be categorized. |
cutoff |
By default, the cutoff is 0.33. If the user wants to use another value, it has to be cited on the description of the used methodology that the cutoff was changed. |
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
ClusterNodes
Description
Categorize the Nodes into Phi and Phi tilde.
Usage
ClusterNodes(DiffNet, cutoff.external = 0.8, cutoff.internal = 0.5)
Arguments
DiffNet |
The Differential network from MakeDiffNet |
cutoff.external |
The cut-off between the clusters (delta from the center to the edge coordinates), the closer to 1, the better. |
cutoff.internal |
The cut-off inside the clusters (delta from the theoretical cluster to the edge coordinates), the closer to zero, the better. |
Examples
DiffNet = MakeDiffNet (Data = list(CTR, AST), Code = c('CTR', 'AST') )
Genes_Phi = ClusterNodes(DiffNet, cutoff.external = 0.5, cutoff.internal = 0.25)
table(Genes_Phi$Phi_tilde)
CreateFullBase
Description
Joins a set of data.frames, order the nodes names by it's smaller value.
Usage
CreateFullBase(x, Code)
Arguments
x |
List of data.frames containig Node.1, Node.2 and the correlation value |
Code |
Name of each one of the networks. |
Value
Returns a list contating: The nodes names and it's correlation values in all networks, 0 if this node is absent.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
GLI
Description
This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 81 brain samples with glioblastomas. The wTO was calculated using the package wTO.
Usage
data("GLI")
Format
A data frame with 3488761 observations on the following 3 variables.
Node.1
a factor with levels. TF names
Node.2
a factor with levels. TF names
cor
a numeric vector. wTO values calculated using only the TFs
Source
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4290
References
Sun L, Hui AM, Su Q, Vortmeyer A et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006 Apr;9(4):287-300. PMID: 16616334
Examples
data(GLI)
str(GLI)
MakeDiffNet
Description
Categorize links into Phi categories, calculate the distance to the center and also normlize the distance into some categories: Phi and Phi tilda, group and all.
Usage
MakeDiffNet(Data, Code, cutoff = 0.33, stretch = TRUE)
Arguments
Data |
List of data.frames containig Node.1, Node.2 and the correlation value |
Code |
Name of each one of the networks. |
cutoff |
By default, the cutoff is 0.33. If the user wants to use another value, it has to be cited on the description of the used methodology that the cutoff was changed. |
stretch |
Should the input data be normalized? Default to TRUE. |
Value
Returns a data.table contating: Nodes names, correlation value for each network (the input values), the k means cluster that link belongs, the Phi groups (Phi and Phi tilda), the signed group that link belongs to, the unsigned group. The distance to the center, and the distance normalized by: Phi_tilda, Phi, signed group or all data.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
suppressWarnings(RNGversion("3.5.0"))
Nodes = LETTERS[1:20]
Net1 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3') )
print(DiffNet)
OLI
Description
This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 50 brain samples with oligodendrogliomas. The wTO was calculated using the package wTO.
Usage
data("OLI")
Format
A data frame with 3488761 observations on the following 3 variables.
Node.1
a factor with levels. TF names
Node.2
a factor with levels. TF names
cor
a numeric vector. wTO values calculated using only the TFs
Source
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4290
References
Sun L, Hui AM, Su Q, Vortmeyer A et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006 Apr;9(4):287-300. PMID: 16616334
Examples
data(OLI)
str(OLI)
OrderNames
Description
Sorts each link's Nodes by the smallest value. Removes links that both nodes are the same.
Usage
OrderNames(M)
Arguments
M |
data.frame to have the names ordered. Node.1, Node.2 and correlation value. |
Value
a data.table whith Node.1 and Node.2, sorted by the smallest value between both.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
Nodes = LETTERS[1:10]
Z = data.frame(Node.1 = sample(Nodes) ,
Node.2 = sample(Nodes), cor = runif(10,-1,1))
OrderNames(Z)
PhiCategory
Description
Categorize the links into Phi and Phi tilda categories.
Usage
PhiCategory(Base, n, CAT_BASE = CAT_BASE)
Arguments
Base |
data.frame to be categorized |
n |
number of networks to be compared |
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Title Recode
Description
Title Recode
Usage
Recode(Phi, values)
Arguments
Phi |
Phi categories |
values |
Categorical base |
as.igraph
Description
Converts the CoDiNA.plot into an igraph object.
Usage
as.igraph(x)
Arguments
x |
the output from the function plot. |
Value
the CoDiNA plot as an igraph object.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
suppressWarnings(RNGversion("3.5.0"))
Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3') )
Graph = plot(x = DiffNet,
layout = NULL, smooth.edges = TRUE,
path = NULL, MakeGroups = FALSE, Cluster = FALSE,
legend = TRUE, manipulation = FALSE, sort.by.Phi = FALSE)
x = as.igraph(Graph)
plot(x)
normalize
Description
Normalize a given variable.
Usage
normalize(m)
Arguments
m |
variable to be normalized in the interval [0,1] |
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
Z = runif(10,-10,10)
normalize(Z)
plot.CoDiNA
Description
Categorize the Nodes into Phi and groups categories. Also, creates an interactive view of the CoDiNA network.
Usage
## S3 method for class 'CoDiNA'
plot(
x,
cutoff.external = 0,
cutoff.internal = 1,
cutoff.ratio = 1,
layout = NULL,
smooth.edges = TRUE,
path = NULL,
MakeGroups = FALSE,
Cluster = FALSE,
legend = TRUE,
manipulation = FALSE,
sort.by.Phi = FALSE,
...
)
Arguments
x |
Output from MakeDiffNet |
cutoff.external |
The cut-off between the clusters (delta from the center to the edge coordinates), the closer to 1, the better. |
cutoff.internal |
The cut-off inside the clusters (delta from the theoretical cluster to the edge coordinates), the closer to zero, the better. |
cutoff.ratio |
The cut-off for the ratio of both scores. Default is set to 1. The greater, the better. |
layout |
a layout from the igraph package. |
smooth.edges |
If the edges should be smoothed or not. |
path |
If the graph should be saved specify the name of the file. |
MakeGroups |
algorithm to find clusters. One of the followings: walktrap, optimal, spinglass, edge.betweenness, fast_greedy, infomap, louvain, label_prop, leading_eigen. Default to FALSE. |
Cluster |
TRUE or FALSE if the nodes should be clustered (double click to uncluster). |
legend |
TRUE or FALSE if the legend should appear. |
manipulation |
TRUE or FALSE if the graph should be editable. |
sort.by.Phi |
if the graph should be plotted in the Phi order |
... |
Additional plotting parameters. |
Value
Returns a list contatining: The nodes description, the Edges description and the network graph.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
suppressWarnings(RNGversion("3.5.0"))
Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3') )
Graph = plot(x = DiffNet,
layout = NULL, smooth.edges = TRUE,
path = NULL, MakeGroups = FALSE, Cluster = FALSE,
legend = TRUE, manipulation = FALSE, sort.by.Phi = FALSE)
Graph
print.CoDiNA
Description
Print on the screen the number of nodes and edges. To see the data.frame, call: data.frame().
Usage
## S3 method for class 'CoDiNA'
print(x, ...)
Arguments
x |
Output from MakeDiffNet |
... |
Additional plotting parameters. |
Value
Print on the screen the number of nodes and edges.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3') )
print(DiffNet)
summary.CoDiNA
Description
summary of the CoDiNA network.
Usage
## S3 method for class 'CoDiNA'
summary(object, ...)
Arguments
object |
Output from MakeDiffNet |
... |
Additional plotting parameters. |
Value
Returns a summary describing the network.
Author(s)
Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>
Examples
Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes) , Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3') )
summary(DiffNet)